Navegando por Autor "Affonso, Alex Antonio"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
- ItemEstudo, modelagem e simulação de um inversor de comutação suave para aplicação em filtros ativos de potência monofásicos(Biblioteca Digital de Teses e Dissertações da USP, 2017-11-15) Affonso, Alex Antonio
- ItemReconhecimento facial em ambientes não controlados por meio do High-boost Weber Descriptor na região periocular(2018-07-13) Affonso, Alex AntonioO reconhecimento facial automático é uma tarefa muito importante para a sociedade moderna, pois possibilita o desenvolvimento de diversas aplicações, tais como o controle de imigração em aeroportos, a autenticação de documentos, etc. Muitas destas aplicações ocorrem em ambientes não controlados, onde as fotos são obtidas com grandes variações de poses e expressões faciais, de iluminação, no uso de maquiagem e acessórios, etc. A tarefa de reconhecimento facial automático em ambientes não controlados é ainda muito desafiadora e tem sido alvo de muitas pesquisas no mundo todo nos últimos anos. Dentro deste contexto, esta tese propõe e implementa um conjunto de novos métodos que visam contribuir para o avanço do estado da arte relacionado a este tema de pesquisa. Inicialmente foi proposto o HBWLF, um filtro para enfatizar as componentes de alta frequência da imagem, sem eliminar as de baixa, realçando assim os diversos detalhes das imagens faciais. Em seguida foi proposta uma versão mais geral deste filtro, o MHBWLF, que considera uma vizinhança circular, ao invés de uma grade regular de 3x3 pixels. O MHBWLF foi aplicado em conjunto com um filtro MOSSE no desenvolvimento de um método para a localização precisa dos centros dos olhos. Aproveitando as características do MHBWLF e inspirado em outros descritores foi proposto um novo descritor, o HBWD. Por fim, foi introduzido um novo método de reconhecimento facial, baseado no HBWD. O método proposto emprega o HBWD para descrever densamente a região periocular e, a fim de reduzir a dimensão dos dados, foi proposto um algoritmo de mapeamento baseado no método de agrupamento k-Means++. Os métodos propostos foram todos avaliados utilizando-se imagens das bases LFW, FGLFW e BioID e os resultados experimentais obtidos mostram que os métodos propostos tem desempenho superior a vários outros métodos estado da arte.