Navegando por Autor "Marcomini, Karem Daiane"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
- ItemAplicação de modelos de redes neurais artificiais na segmentação e classificação de nódulos em imagens de ultrassonografia de mama(Biblioteca Digital de Teses e Dissertações da USP, 2017-11-15) Marcomini, Karem Daiane
- ItemCaracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes(2017-12-12) Marcomini, Karem DaianeMuitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Devido a subjetividade na interpretação de imagens, os sistemas de diagnóstico auxiliado por computador (CADx) têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia de investigação da potencialidade diagnóstica de um sistema computacional na classificação de achados suspeitos em imagens de ultrassom modo-B e de elastografia da mama. A base de dados foi constituída por 31 lesões malignas e 52 benignas e um conjunto adicional contendo 206 lesões de ultrassom modo-B (144 benignas e 62 malignas) para a realização dos testes de aprendizado de máquina. O contorno foi determinado automaticamente e através do delineamento manual de três radiologistas sob a imagem de ultrassom modo-B e, em seguida, mapeado na imagem elastográfica. As lesões foram classificadas pelo sistema CADx desenvolvido para ultrassom modo-B e elastografia do tipo strain. Os dados foram avaliados por meio da sensibilidade, especificidade e AUC. O sistema CADx desenvolvido proporcionou equivalência diagnóstica para a classificação das lesões a partir das diversas formas de determinação do contorno (manual e automática), permitindo a redução da variabilidade. Além disso, o sistema apontou resultados superiores à análise visual do radiologista que, quando considerado o resultado fornecido pela associação entre as imagens de ultrassom modo-B e elastografia, proporcionou um aumento comparativo de cerca de 7% em sensibilidade e 17,2% em especificidade nos testes com o sistema CADx usando o contorno feito pelo radiologista mais experiente. Além disso, constatou-se uma influência positiva no uso da ferramenta computacional pelos radiologistas, pois, na média, seus índices de sensibilidade e especificidade diagnóstica aumentaram também em relação à situação de análise convencional, passando de 87,1% e 55,8% para 90,3% e 73,1%, respectivamente.