Logo do repositório
  • English
  • Español
  • Português do Brasil
  • Entrar
    Esqueceu sua senha?
Logo do repositório Repositório Institucional EESC
  • Comunidades e Coleções
  • Tudo no DSpace
  • English
  • Español
  • Português do Brasil
  • Entrar
    Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Moraes, Diego Rafael"

Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
  • Nenhuma Miniatura disponível
    Item
    Estimação de idade óssea: análise do polinômio que descreve o comportamento da concavidade inferior da terceira vértebra cervical como característica discriminante
    (Biblioteca Digital de Teses e Dissertações da USP, 2017-11-15) Moraes, Diego Rafael
  • Nenhuma Miniatura disponível
    Item
    Segmentação de imagens coloridas baseada na mistura de cores e redes neurais
    (2018-06-15) Moraes, Diego Rafael
    O Color Mixture é uma técnica para segmentação de imagens coloridas, que cria uma \"Retina Artificial\" baseada na mistura de cores, e faz a quantização da imagem projetando todas as cores em 256 planos no cubo RGB. Em seguida, atravessa todos esses planos com um classificador Gaussiano, visando à segmentação da imagem. Porém, a abordagem atual possui algumas limitações. O classificador atual resolve exclusivamente problemas binários. Inspirado nesta \"Retina Artificial\" do Color Mixture, esta tese define uma nova \"Retina Artificial\", propondo a substituição do classificador atual por uma rede neural artificial para cada um dos 256 planos, com o objetivo de melhorar o desempenho atual e estender sua aplicação para problemas multiclasse e multiescala. Para esta nova abordagem é dado o nome de Neural Color Mixture. Para a validação da proposta foram realizadas análises estatísticas em duas áreas de aplicação. Primeiramente para a segmentação de pele humana, tendo sido comparado seus resultados com oito métodos conhecidos, utilizando quatro conjuntos de dados de tamanhos diferentes. A acurácia de segmentação da abordagem proposta nesta tese superou a de todos os métodos comparados. A segunda avaliação prática do modelo proposto foi realizada com imagens de satélite devido à vasta aplicabilidade em áreas urbanas e rurais. Para isto, foi criado e disponibilizado um banco de imagens, extraídas do Google Earth, de dez regiões diferentes do planeta, com quatro escalas de zoom (500 m, 1000 m, 1500 m e 2000 m), e que continham pelo menos quatro classes de interesse: árvore, solo, rua e água. Foram executados quatro experimentos, sendo comparados com dois métodos, e novamente a proposta foi superior. Conclui-se que a nova proposta pode ser utilizada para problemas de segmentação de imagens coloridas multiclasse e multiescala. E que possivelmente permite estender o seu uso para qualquer aplicação, pois envolve uma fase de treinamento, em que se adapta ao problema.

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Enviar uma Sugestão