Projeto, otimização e análise de incertezas de um dispositivo coletor de energia proveniente de vibrações mecânicas utilizando transdutores piezelétricos e circuito ressonante
Data
2017-11-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
O uso de materiais piezelétricos no desenvolvimento de dispositivos para o aproveitamento de energia provinda de vibrações mecânicas, Energy Harvesting, tem sido largamente estudado na última década. Materiais piezelétricos podem ser encontrados na forma de finas camadas ou pastilhas, sendo facilmente integradas a estruturas sem aumento significativo de massa. A conversão de energia mecânica em energia elétrica se dá graças ao acoplamento eletromecânico dos materiais piezelétricos. A maioria das publicações encontradas na literatura exploram o uso de dispositivos eletromecânicos ressonantes, sintonizados na frequência de operação da estrutura, maximizando assim, a energia elétrica de saída dada uma certa condição de operação. O desempenho desses dispositivos ressonantes para coletar e armazenar energia é altamente dependente da adequada sintonização da sua frequência de ressonância com a frequência de operação do sistema/estrutura. Este trabalho apresenta o projeto, otimização e análise de incertezas de um dispositivo coletor/armazenador de energia que consiste em uma placa sob duas condições de contorno, engastada-livre (EL) e deslizante-livre (DL), com massa sísmica e materiais piezelétricos conectados a um circuito shunt. Um modelo em elementos finitos de placa laminada piezelétrica conectada a circuitos R e RL é utilizado combinando as teorias de camada equivalente e deformação de cisalhamento de primeira ordem. A disposição/quantidade de material piezelétrico bem como a massa sísmica acoplados à estrutura foram otimizadas utilizando-se um Algoritmo Genético, levando em conta análises mecânica (modelo mecânico, geometria, peso) e elétrica (modelo elétrico, circuito armazenador). Além disso, o efeito de incertezas dos parâmetros dielétrico e piezelétrico do transdutor, e da indutância elétrica ligada em série ao circuito coletor/armazenador de energia foi estudado. Os resultados indicam que a inclusão de uma indutância sintética ao circuito pode melhorar a coleta de energia em uma banda de frequência e, ainda, que a otimização geométrica pode reduzir a quantidade de material piezelétrico sem no entanto diminuir significativamente a energia gerada.
The use of piezoelectric materials in the development of devices to harvest energy from mechanical vibrations (Energy Harvesting) has been widely studied in the last decade. Piezoelectric materials can be found in the form of thin layers or patches easily integrated into structures without significant mass increase. The conversion of mechanical energy into electric power is provided by the electromechanical coupling of piezoelectric materials. Most publications in the literature explore the use of resonant electromechanical devices, tuned to the operating frequency of the host structure, thus maximizing the power output given a certain operating condition. The performance of these resonant devices to harvest and store energy is highly dependent on the proper tuning of its resonance frequency with the operation frequency of the system/structure. This work presents a design, optimization and uncertainty analysis of energy harvester device consisting of a plate with tip mass and piezoelectric materials connected to shunt circuits. Two boundary conditions are used for the plate, cantilever (EL) and sliding-free (DL). A coupled finite element model with R and RL circuits, combining equivalent single layer and first order shear deformation theories, was used. The distribution and volume of piezoelectric material and the tip mass coupled to the structure were optimized using a Genetic Algorithm, accounting for both mechanical (mechanical model, geometry, weight) and electric (electric model, storer circuit) analyses. Furthermore, the effect of uncertainties of transducer dielectric and piezoelectric constants and electric inductance connected in series with harvesting circuit was studied. The results indicate that the inclusion of a synthetic inductance can improve energy harvesting performance over a frequency range and also that the geometric optimization may reduce the piezoelectric material volume without diminishing significantly the harvested energy.
The use of piezoelectric materials in the development of devices to harvest energy from mechanical vibrations (Energy Harvesting) has been widely studied in the last decade. Piezoelectric materials can be found in the form of thin layers or patches easily integrated into structures without significant mass increase. The conversion of mechanical energy into electric power is provided by the electromechanical coupling of piezoelectric materials. Most publications in the literature explore the use of resonant electromechanical devices, tuned to the operating frequency of the host structure, thus maximizing the power output given a certain operating condition. The performance of these resonant devices to harvest and store energy is highly dependent on the proper tuning of its resonance frequency with the operation frequency of the system/structure. This work presents a design, optimization and uncertainty analysis of energy harvester device consisting of a plate with tip mass and piezoelectric materials connected to shunt circuits. Two boundary conditions are used for the plate, cantilever (EL) and sliding-free (DL). A coupled finite element model with R and RL circuits, combining equivalent single layer and first order shear deformation theories, was used. The distribution and volume of piezoelectric material and the tip mass coupled to the structure were optimized using a Genetic Algorithm, accounting for both mechanical (mechanical model, geometry, weight) and electric (electric model, storer circuit) analyses. Furthermore, the effect of uncertainties of transducer dielectric and piezoelectric constants and electric inductance connected in series with harvesting circuit was studied. The results indicate that the inclusion of a synthetic inductance can improve energy harvesting performance over a frequency range and also that the geometric optimization may reduce the piezoelectric material volume without diminishing significantly the harvested energy.
Palavras-chave
Análise de incertezas, Power/energy harvesting, Vibrações mecânicas, Otimização topológica, Materiais piezelétricos, Dispositivo gerador de energia, Circuito shunt ressonante, Mechanical vibrations, Power/energy harvesting devices, Resonant shunt circuit, Topology optimization, Uncertainty analysis, Piezoelectric materials