Seleção de cepas oleaginosas da microalga Chlorella spp. e otimização do seu cultivo em meio sintético e vinhaça visando à produção sustentável de biodiesel
Data
2017-11-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Microalgas oleaginosas apresentam produtividade de biomassa oleaginosa maior do que vegetais vasculares e sua utilização como fonte de matéria-prima para biodiesel tem sido amplamente investigada. Ganha cada vez mais destaque a ideia de acoplar o cultivo de microalgas oleaginosas ao tratamento de águas residuárias para baratear custos de produção, resolver problemas ambientais e gerar biomassa com valor de mercado dentro de biorrefinarias. No Brasil, o aumento da produção de bioetanol gera como resíduo vinhaça, água residuária rica em compostos minerais e orgânicos que poderia sustentar o cultivo mixotrófico de microalgas oleaginosas. Visando explorar esta questão, esta pesquisa foi dividida em três etapas cujos objetivos centrais foram: (1) isolar e selecionar cepas potencialmente oleaginosas de Chlorella spp. (2) investigar e selecionar fatores químicos, físicos e tróficos para otimizar a produtividade de biomassa e lipídeos das cepas selecionadas; (3) adequar vinhaça ao cultivo otimizado de Chlorella potencialmente oleaginosa visando à produtividade de biomassa e remoção de nutrientes. O crescimento das microalgas foi monitorado por absorbância (683 nm) previamente calibrada com sólidos totais e o modelo de Gompertz foi utilizado para gerar curvas e parâmetros de crescimento (amplitude, tempo de geração e velocidade específica máxima de crescimento). Foram monitorados acúmulo de lipídeos neutros (fluorescência e extração), assimilação de nutrientes, clorofila a e avaliadas produtividades de biomassa e lipídeos. Na etapa 1, a indução de síntese e acúmulo de triglicerídeos pela via heterotrófica (5 g L-1 de glicose) detectou 3 cepas de Chlorella (VIN01, C203 e FAZ5-10) com elevados índices de fluorescência, as quais foram selecionadas para terem seu cultivo otimizado. Na etapa 2, a frente trófica destacou-se, dentre as três frentes de varredura investigadas, e promoveu melhorias expressivas nos parâmetros de crescimento das três cepas selecionadas. Cultivos mixotróficos utilizando glicose e ácido acético foram os mais promissores, dentre os pesquisados, para otimizar o cultivo de Chlorella spp. Glicose foi selecionada para compor o meio base dos cultivos mixotróficos, que foram otimizados por delineamento composto central rotacional (DCCR) e análises de superfície de resposta com os fatores luz e temperatura. Na etapa 3, as condições otimizadas do cultivo mixotrófico, determinadas pelos modelos preditivos, foram simuladas em fotobiorreatores aerados de 8L. Eles aumentaram a produtividade de biomassa da cultura mixotrófica otimizada (VIN01) em 59 vezes (de 8,1 para 482,3 mg L-1 dia-1) e a produtividade de lipídeos em 51 vezes (de 1,4 para 73,2 mg L-1 dia-1), em relação à sua cultura fototrófica. O cultivo otimizado de Chlorella sp. em vinhaça aumentou sua produtividade de biomassa em 19 vezes (de 8,1 para 154,4 mg L-1 dia-1) e lipídeos em 13 vezes (de 1,4 para 18,7 mg L-1 dia-1), em relação à sua cultura fototrófica. Além disso, a microalga assimilou da vinhaça 57,2 mg L-1 de nitrogênio, 13,0 mg L-1 de fósforo, 3030 mg L-1 de DQO (Demanda Química de Oxigênio) e 778 mg L-1 de COT (Carbono Orgânico Total). Desta forma, ficou comprovado que vinhaça pode favorecer o cultivo mixotrófico de Chlorella, que removeu matéria orgânica e minerais do efluente e produziu biomassa com potencial exploração à cadeia produtiva de biodiesel.
Oil-bearing microalgae have biomass and lipid productivities greater than vascular plants and use their biomass as a raw material for biodiesel production has been widely investigated. The idea of engaging oleaginous microalgae cultivation with wastewater treatment is becoming increasingly relevant in order to reduce the production costs of biofuel, to solve environmental problems and to produce biomass with economic value in the biorefineries. Brazilian bioethanol mills generate vinasse as wastewater, which is rich in minerals and organic compounds that might support mixotrophic growth of microalgae. Aiming to answer this question, this research was divided in three phases whose have the following purposes: (1) isolate and select oleaginous Chlorella strains; (2) study and select chemical, physical and trophic factors to optimize biomass and lipids productivities of selected strains; (3) bring vinasse suitable to cultivation of oleaginous Chlorella intending to biomass productivity and nutrient removal. Microalgae growth was monitored by optical density measurements (683 nm) previously calibrated with total solids. The growth curves and growth parameters (amplitude, doubling time and maximum specific growth rate) were calculated from the Gompertz mathematical model. It was monitored neutral lipids storage (by fluorescence and cellular extraction), nutrients assimilation, chlorophyll a, and biomass and lipids productivities were evaluated. In the phase 1, heterotrophic cultivation (5 g L-1 glucose) promoted synthesis and storage of neutral lipids and high fluorescence measurements among three Chlorella strains (VIN01, C203 and FAZ5-10) whose were selected to optimization of their cultures. In the phase 2, trofic factors improved significantly the growth parameters of the strains studied. Among factors investigated, mixotrophic cultures with glucose and acetic acid were the most promising organic compounds to optimize Chlorella cultures. Central composite design (CCD) and response surface analyses with factors light and temperature were carried out to optimize mixotrophic cultures (glucose). In the phase 3, optimal mixotrophic culture conditions were defined and reproduced in aerated photobioreactors (8 L). Optimal conditions increased the biomass productivity of mixotrophic culture (VIN01) by 59-fold (from 8,1 to 482,3 mg L-1 day-1) and lipid productivity by 51-fold (from 1,4 to 73,2 mg L-1 day-1) regarding the phototrophic culture (VIN01). Optimal conditions in vinasse increased the biomass productivity by 19-fold (from 8,1 to 154,4 mg L-1 day-1) and lipid productivity by 13-fold (from 1,4 to 18,7 mg L-1 day-1) regarding to photrophic culture. Moreover, the microalga assimilated from vinasse 57,2 mg L-1 of nitrogen, 13,0 mg L-1 of phosphorus, 3030 mg L-1 of QOD and 778 mg L -1 of TOC. Therefore, it was proved that vinasse enhanced mixotrophic culture of Chlorella, which removed organic matter and minerals from wastewater and produced biomass with potential commercial exploitation for biodiesel production.
Oil-bearing microalgae have biomass and lipid productivities greater than vascular plants and use their biomass as a raw material for biodiesel production has been widely investigated. The idea of engaging oleaginous microalgae cultivation with wastewater treatment is becoming increasingly relevant in order to reduce the production costs of biofuel, to solve environmental problems and to produce biomass with economic value in the biorefineries. Brazilian bioethanol mills generate vinasse as wastewater, which is rich in minerals and organic compounds that might support mixotrophic growth of microalgae. Aiming to answer this question, this research was divided in three phases whose have the following purposes: (1) isolate and select oleaginous Chlorella strains; (2) study and select chemical, physical and trophic factors to optimize biomass and lipids productivities of selected strains; (3) bring vinasse suitable to cultivation of oleaginous Chlorella intending to biomass productivity and nutrient removal. Microalgae growth was monitored by optical density measurements (683 nm) previously calibrated with total solids. The growth curves and growth parameters (amplitude, doubling time and maximum specific growth rate) were calculated from the Gompertz mathematical model. It was monitored neutral lipids storage (by fluorescence and cellular extraction), nutrients assimilation, chlorophyll a, and biomass and lipids productivities were evaluated. In the phase 1, heterotrophic cultivation (5 g L-1 glucose) promoted synthesis and storage of neutral lipids and high fluorescence measurements among three Chlorella strains (VIN01, C203 and FAZ5-10) whose were selected to optimization of their cultures. In the phase 2, trofic factors improved significantly the growth parameters of the strains studied. Among factors investigated, mixotrophic cultures with glucose and acetic acid were the most promising organic compounds to optimize Chlorella cultures. Central composite design (CCD) and response surface analyses with factors light and temperature were carried out to optimize mixotrophic cultures (glucose). In the phase 3, optimal mixotrophic culture conditions were defined and reproduced in aerated photobioreactors (8 L). Optimal conditions increased the biomass productivity of mixotrophic culture (VIN01) by 59-fold (from 8,1 to 482,3 mg L-1 day-1) and lipid productivity by 51-fold (from 1,4 to 73,2 mg L-1 day-1) regarding the phototrophic culture (VIN01). Optimal conditions in vinasse increased the biomass productivity by 19-fold (from 8,1 to 154,4 mg L-1 day-1) and lipid productivity by 13-fold (from 1,4 to 18,7 mg L-1 day-1) regarding to photrophic culture. Moreover, the microalga assimilated from vinasse 57,2 mg L-1 of nitrogen, 13,0 mg L-1 of phosphorus, 3030 mg L-1 of QOD and 778 mg L -1 of TOC. Therefore, it was proved that vinasse enhanced mixotrophic culture of Chlorella, which removed organic matter and minerals from wastewater and produced biomass with potential commercial exploitation for biodiesel production.
Palavras-chave
Água residuária, Óleos, Lipídeos, Biotecnologia, Biomassa, Biocombustíveis, Biotechnology, Biomass, Biofuels, Lipids, Oils, Wastewater