Segmentação de imagens mamográficas digitais para detecção de microcalcificações em mamas densas
Resumo
Este projeto de pesquisa trata da investigação das técnicas de segmentação de imagens digitais e de suas características, problemas e soluções principais, para aplicação específica em imagens mamográficas com o objetivo de auxiliar a detecção de microcalcificações. A identificação desse tipo de estrutura na avaliação da imagem em mamografia é um requisito importante para a formulação do diagnóstico, dadas suas peculiaridades em termos de associação a tumores. Como atualmente cada vez mais esquemas em CAD (Computer-Aided Diagnosis) estão sendo desenvolvidos a fim de, a partir do conveniente processamento da imagem mamográfica digitalizada, classificar as estruturas encontradas como auxílio ao diagnóstico do câncer de mama, é de fundamental importância que a segmentação dessas imagens tenha qualidade suficiente para permitir a eficácia na classificação das estruturas segmentadas. Particularmente, casos de mamas densas representam uma dificuldade adicional e muito importante para a avaliação diagnóstica, dadas as características peculiares da imagem em termos de contraste ruim, em razão da existência de quantidade significativamente maior de tecido fibroso, o qual dificulta a identificação de sinais suspeitos na imagem. Por isso, esse trabalho está voltado ao estudo extensivo das principais técnicas de segmentação existentes para imagens mamográficas, a fim de determinar aquelas que são mais eficientes no processo de extração de microcalcificações.
This work is about the investigation of digital images segmentation techniques (characteristics, problems and main solutions) for specific application in mammography, with the objective of aiding microcalcifications detection. The identification of the structure type on mammogram evaluation is an important requirement to prepare the diagnosis, because of its peculiarities to associate breast cancer terms. As nowadays more and more CAD (Computer-Aided Diagnosis) are being developed in order to, starting from the convenient digital image processing, classify the finding structures as an aid to the diagnosis of breast cancer, it is of fundamental importance that the images segmentation has enough quality to allow the effectiveness of the structures classification. Particularly, cases of dense breast represent an additional and very important difficulty for the diagnosis, because of the peculiar characteristics of the image in terms of bad contrast, due to the existence significantly larger of fibrous tissue, which hinder the identification of suspicious signs in breast image. Therefore, this work focus the extensive study of the main segmentation techniques developed to mammographic images in order to determine which are more efficient in the microcalcifications extraction process.