Otimização de componentes de concreto pré-moldado protendidos mediante algoritmos genéticos
Data
2017-11-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Este trabalho trata da otimização de painéis alveolares e vigotas protendidas utilizando Algoritmos Genéticos (AGs). A proposta de tal algoritmo foi inspirada no princípio da seleção natural de indivíduos, onde o mais apto tende a permanecer na população e se reproduzir, passando seu código genético para a próxima geração. Em alguns casos, esse método pode alcançar melhores soluções se comparados aos métodos tradicionais de otimização. O principal objetivo do trabalho é investigar o uso de AG como uma técnica para a minimização da função custo da aplicação de painéis alveolares e vigotas protendidas. Na análise estão incluídas as verificações dos elementos nas etapas transitórias referentes à produção, transporte e montagem. A função custo é avaliada considerando valores da realidade brasileira. O trabalho de pesquisa compara os resultados obtidos utilizando AGs com aqueles obtidos utilizando o método de otimização convencional conhecido como método do Lagrangiano Aumentado. Os resultados obtidos por ambos os métodos evidenciam a eficácia dos AGs com relação ao método convencional. Foram propostas e analisadas três famílias do AG simples, buscando identificar, dentre seus elementos, quais variantes mais adequados na busca da solução dos problemas.
This work aims to optimize the production cost of hollow core panels and prestressed joists using Genetic Algorithms (GAs). The proposal of such an algorithm was inspired by the principle of natural selection of individuals, where the most capable tends to remain in the population and reproduce, passing its genetic code onto the next generation. In some cases, this method can achieve good solutions when compared with conventional methods of optimization. The main goal of the work is to investigate AG as a technique for the minimization of the function cost of hollow core panel and prestressed joist applications. The analysis takes account of the verifications of the precast elements in the transitory stages as production,transportation and erection. The function cost is evaluated within the Brazilian context. The research compares the results using GAs with those using a conventional method, the Augmented Lagrangian. The results provide evidence the effectiveness of the GAs with relation to a conventional method. The research considers three families of the simple GA, searching to identify, among them, the adjusted variant in the search of the solution of the problems.
This work aims to optimize the production cost of hollow core panels and prestressed joists using Genetic Algorithms (GAs). The proposal of such an algorithm was inspired by the principle of natural selection of individuals, where the most capable tends to remain in the population and reproduce, passing its genetic code onto the next generation. In some cases, this method can achieve good solutions when compared with conventional methods of optimization. The main goal of the work is to investigate AG as a technique for the minimization of the function cost of hollow core panel and prestressed joist applications. The analysis takes account of the verifications of the precast elements in the transitory stages as production,transportation and erection. The function cost is evaluated within the Brazilian context. The research compares the results using GAs with those using a conventional method, the Augmented Lagrangian. The results provide evidence the effectiveness of the GAs with relation to a conventional method. The research considers three families of the simple GA, searching to identify, among them, the adjusted variant in the search of the solution of the problems.
Palavras-chave
algoritmos genéticos, painel alveolar, otimização estrutural, método Lagrangeano Aumentado, lajes, custos, vigota protendida, hollow core panel, genetic algorithm, Augmented Lagrangian, prestressed joist, slabs, structural optimization