Metodologia de fusão de vídeos e sons para monitoração de comportamento de insetos
Data
2017-11-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Este trabalho apresenta uma nova abordagem para fusão de vídeo e som diretamente no espaço de atributos visando otimizar a identificação do comportamento de insetos. Foi utilizado o detector de Harris para rastreamento dos insetos, assim como a técnica inovadora Wavelet-Multifractal para análise de som. No caso da Wavelet-Multifractal, foram testadas várias Wavelet-mães, sendo a Morlet a melhor escolha para sons de insetos. Foi proposto a Wavelet Módulo Máximo para extrair atributos multifractais dos sons para serem utilizados no reconhecimento de padrões de comportamento de insetos. A abordagem Wrapper de mineração de dados foi usada para selecionar os atributos relevantes. Foi constatado que a abordagem Wavelet-multifractal identifica melhor os sons, particularmente no caso de distorções provocadas por ruídos. As imagens foram responsáveis pela identificação de acasalamento e os sons pelos outros comportamentos. Foi também proposto um novo método do triângulo como representação simplificada do espectro multifractal visando simplificação do processamento.
This work presents an innovative video and sound fusion approach by feature subset selection under the space of attributes to optimally identify insects behavior. Harris detector was used for insect movement tracking and an innovative technique of Multifractal-Wavelet was used to analyze the insect sounds. In the case of Multifractal-Wavelet, more than one mother-wavelet was tested, being the Morlet wavelet the best choice of mother-wavelet for insect sounds. The wavelet modulus maxima was proposed to extract multifractal sound attributes to be used in pattern recognition of an insect behavior. The wrapper data mining approach was used to select relevant attributes. It has been found that, in general, wavelet-multifractal based schemes perform better for sound, particularly in terms of minimizing noise distortion influence. The image features only determine the mating and the sound other behaviors. A new triangle representation of multifractal spectrum was proposed as a processing simplification.
This work presents an innovative video and sound fusion approach by feature subset selection under the space of attributes to optimally identify insects behavior. Harris detector was used for insect movement tracking and an innovative technique of Multifractal-Wavelet was used to analyze the insect sounds. In the case of Multifractal-Wavelet, more than one mother-wavelet was tested, being the Morlet wavelet the best choice of mother-wavelet for insect sounds. The wavelet modulus maxima was proposed to extract multifractal sound attributes to be used in pattern recognition of an insect behavior. The wrapper data mining approach was used to select relevant attributes. It has been found that, in general, wavelet-multifractal based schemes perform better for sound, particularly in terms of minimizing noise distortion influence. The image features only determine the mating and the sound other behaviors. A new triangle representation of multifractal spectrum was proposed as a processing simplification.
Palavras-chave
Fusão de sensores, Seleção de características, Wavelet-multifractal, Feature selection, Fusion, Wavelet-multifractal, Wrapper