Rede neural recorrente com perturbação simultânea aplicada no problema do caixeiro viajante

Data
2017-11-15
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
O presente trabalho propõe resolver o clássico problema combinatorial conhecido como problema do caixeiro viajante. Foi usado no sistema de otimização de busca do menor caminho uma rede neural recorrente. A topologia de estrutura de ligação das realimentações da rede adotada aqui é conhecida por rede recorrente de Wang. Como regra de treinamento de seus pesos sinápticos foi adotada a técnica de perturbação simultânea com aproximação estocástica. Foi elaborado ainda uma minuciosa revisão bibliográfica sobre todos os temas abordados com detalhes sobre a otimização multivariável com perturbação simultânea. Comparar-se-á também os resultados obtidos aqui com outras diferentes técnicas aplicadas no problema do caixeiro viajante visando propósitos de validação.
This work proposes to solve the classic combinatorial optimization problem known as traveling salesman problem. A recurrent neural network was used in the system of optimization to search the shorter path. The structural topology linking the feedbacks of the network adopted here is known by Wang recurrent network. As learning rule to find the appropriate values of the weights was used the simultaneous perturbation with stochastic approximation. A detailed bibliographical revision on multivariable optimization with simultaneous perturbation is also described. Comparative results with other different techniques applied to the traveling salesman are still presented for validation purposes.
Palavras-chave
Rede neural recorrente, Perturbação simultânea com aproximação estocástica, Problema combinatorial, Problema do caixeiro viajante, Regra de treinamento, Rede recorrente de Wang, Traveling salesman problem, Simultaneous perturbation stochastic approximation, Combinatorial problem, Recurrent neural network, Learning rule, Wang recurrent network
Citação