Filtros de Kalman no tempo e freqüência discretos combinados com subtração espectral

Data
2017-11-15
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Este trabalho tem a finalidade de apresentar e comparar técnicas de redução de ruído utilizando como critérios de avaliação a mínima distorção espectral e a redução de ruído, na reconstrução dos sinais de voz degradados por ruído. Para tanto, utilizou-se os filtros de Kalman de tempo discreto e de freqüência discreta em conjunto com a técnica de subtração espectral de potência. Os sinais utilizados foram contaminados por ruídos branco e colorido, e a avaliação do desempenho dos algoritmos foi realizada tendo-se como parâmetros a relação sinal/ruído segmentada (SNRseg) e a distância de Itakura-Saito (d(a,b)). Após o processamento, verificou-se que a técnica, proposta neste trabalho, de filtragem de Kalman no tempo em conjunto com a subtração espectral de potência, apresentou resultados um pouco melhores em relação à filtragem de Kalman na freqüência em conjunto com a subtração espectral de potência.
This work has as main objective to present and to compare techniques of noise reduction using as evaluation criterion the low spectral distortion and the noise reduction in the reconstruction of corrupted speech signals. For so much, it was used the Kalman\'s filters in the time and frequency domain together with the technique of power spectral subtraction. The used signals were corrupted by white and colored noises and the evaluation of effectiveness of the algorithms was accomplished using the segmental signal-to-noise ratio (SNRseg) and the Itakura-Saito distance (d(a,b)). After the processing, it was noticed that the Kalman filtering in the time together with power spectral subtraction presented better results than the Kalman filtering in the frequency together with power spectral subtraction.
Palavras-chave
Filtro de Kalman, Subtração espectral, Supressão de ruído, Kalman filters, Noise suppression, Spectral subtraction
Citação