Processamento de superfícies poliméricas com pulsos laser de nano e femtossegundos
Data
2017-11-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Neste trabalho exploramos o uso de diferentes técnicas de microestruturação de materiais poliméricos a laser, visando a obteção de superfícies que podem ser aplicadas tanto no desenvolvimento de dispositivos fotônicos quanto de materiais biomédicos. Primeiramente, estudamos a influência da energia de pulso e velocidade de translação sobre as microestruturas produzidas na superfície de filmes de poli(2-metóxi-5-(2-etil-hexiloxi)-1,4-fenileno vinileno) (MEH-PPV). Observamos que a rugosidade da superfície microestruturada aumentou significativamente com o aumento da energia de pulso e velocidade de translação. Além disso, determinamos o limiar de energia para remoção de material, distinguindo o intervalo de energia para a remoção do polímero daquele que causa somente alterações morfológicas. Uma vez que as condições de microestruturação com pulsos laser de femtossegundos foram determinadas, aplicamos tal abordagem para fabricar um dispositivo eletroluminescente microestruturado, sem danificar o polímero e a camada de óxido de índio-estanho, utilizada como contato. Em uma segunda vertente do trabalho, estudamos a influência da energia do pulso ultracurto sobre as propriedades físico-químicas de filmes de quitosana. Neste caso, determinamos o limiar de energia para que ocorra mudança estrutural e remoção de material polimérico. Com isso, produzimos microestruturas com características mais hidrofílicas, além de superfícies com diferentes estruturações superficiais, que foram utilizadas para investigar seu potencial no estudo da formação de biofilme de Staphylococcus aureus. Neste caso, produzimos microestruturas com dimensões de 500 μm2 e diferentes periodicidades (variando de 4 a 12 μm) na superfície de filmes de quitosana e polimetilmetacrilato (PMMA). Com essas microestruturas, observamos distintos comportamentos para a formação de biofilme; no caso do PMMA, não houve distinção de desenvolvimento; quanto às amostras de quitosana, observamos uma preferência das bactérias por superfícies mais rugosas e regiões de bordas das microestruturas. Por fim, em uma terceira vertente do trabalho, utilizamos o método de estruturação direta por interferência para fabricar microestruturas periódicas em membranas de poliuretano, usando pulsos de nanossegundos. Com esse método, produzimos microestruturas de alta qualidade na superfície de membranas de poliuretano, com diferentes periodicidades (variando de 500 nm até 5 μm). Essa microestruturação permitiu a obtenção de amostras com comportamento de molhamento anisotrópico. De maneira geral, os resultados aqui apresentados, além de demonstrar a potencialidade das técnicas de microfabricação a laser, fornecem importantes informações sobre os parâmetros ótimos para microfabricação em filmes poliméricos, visando aplicações tanto em dispositivos fotônicos e optoeletrônicos quanto em biomateriais.
In this work we explored the use of laser micromachining methods to structure polymeric materials, aiming to obtain surfaces that can be applied in the development of photonic devices as well as biomedical materials. Firstly, we investigated the influence of pulse energy and translation speed on microstructures fabricated on the surface of poly[2-methoxy-5- (2\'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) films. We observed that the roughness of the microstructured surface significantly increased with the pulse energy and translation speed. Besides, we determined the energy threshold for material removal, distinguishing the energy range for polymer removal from that causing only structural changes. Once the proper laser micromachining conditions were determined, we were able to apply such approach to fabricate a functional microstructured electroluminescent device, without disrupting the indium tin oxide layer used as the contact for the devices. In the second part of the work, we studied the influence of femtosecond pulses on the structuring process of chitosan films. In this case, we determined the threshold energy that leads to structural change and material removal. We have been able to produced microstructures with hydrophilic characteristics, in addition to surfaces with different structuring that were used to study the formation of Staphylococcus aureus biofilm. For such purpose we produced microstructured areas of 500 μm2 and different periods (ranging from 4 to 12 μm) on the surface of chitosan and poly(methyl methacrylate)(PMMA) films. With these microstructures we observed different behaviors in the biofilm formation; in the case of PMMA, there was not distinction of development; concerning the chitosan samples we observed preferential bacterial growth on the rougher regions of the microstructures. Lastly, in a third part of the study, we used the method of direct laser interference patterning to fabricate periodic microstructures on polyurethane membranes, using nanosecond pulses. With this method, we produced high quality microstructures on the surface of polyurethane with different periodicity (from 500 nm to 5.0 μm). This approach allowed obtaining samples with anisotropic wetting behavior. In general, the results presented here, in addition to demonstrating the potential of the laser micromachining methods to structure polymeric samples, provides important information about the optimal parameters to micromachining of polymer films, aiming at applications in photonic devices, optoelectronics and biomaterials.
In this work we explored the use of laser micromachining methods to structure polymeric materials, aiming to obtain surfaces that can be applied in the development of photonic devices as well as biomedical materials. Firstly, we investigated the influence of pulse energy and translation speed on microstructures fabricated on the surface of poly[2-methoxy-5- (2\'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) films. We observed that the roughness of the microstructured surface significantly increased with the pulse energy and translation speed. Besides, we determined the energy threshold for material removal, distinguishing the energy range for polymer removal from that causing only structural changes. Once the proper laser micromachining conditions were determined, we were able to apply such approach to fabricate a functional microstructured electroluminescent device, without disrupting the indium tin oxide layer used as the contact for the devices. In the second part of the work, we studied the influence of femtosecond pulses on the structuring process of chitosan films. In this case, we determined the threshold energy that leads to structural change and material removal. We have been able to produced microstructures with hydrophilic characteristics, in addition to surfaces with different structuring that were used to study the formation of Staphylococcus aureus biofilm. For such purpose we produced microstructured areas of 500 μm2 and different periods (ranging from 4 to 12 μm) on the surface of chitosan and poly(methyl methacrylate)(PMMA) films. With these microstructures we observed different behaviors in the biofilm formation; in the case of PMMA, there was not distinction of development; concerning the chitosan samples we observed preferential bacterial growth on the rougher regions of the microstructures. Lastly, in a third part of the study, we used the method of direct laser interference patterning to fabricate periodic microstructures on polyurethane membranes, using nanosecond pulses. With this method, we produced high quality microstructures on the surface of polyurethane with different periodicity (from 500 nm to 5.0 μm). This approach allowed obtaining samples with anisotropic wetting behavior. In general, the results presented here, in addition to demonstrating the potential of the laser micromachining methods to structure polymeric samples, provides important information about the optimal parameters to micromachining of polymer films, aiming at applications in photonic devices, optoelectronics and biomaterials.
Palavras-chave
Ablação, Polímeros, Materiais implantáveis, Microestruturação, Modificação de superfícies, Polymers, Microstructuring, Implantable materials, Ablation, Surface modification