O método da função Lagrangiana barreira modificada/penalidade

Data
2017-11-15
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Neste trabalho propomos uma abordagem que utiliza o método de barreira modificada/penalidade para a resolução de problemas restritos gerais de otimização. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos primal-dual barreira logarítmica e método de barreira modificada. Nesta abordagem, as restrições de desigualdade canalizadas são tratadas pela função barreira de Frisch modificada, ou por uma extrapolação quadrática e as restrições de igualdade do problema através da função Lagrangiana. A implementação consiste num duplo estágio de aproximação: um ciclo externo, onde o problema restrito é convertido em um problema irrestrito, usando a função Lagrangiana barreira modificada/penalidade; e um ciclo interno, onde o método de Newton é utilizado para a atualização das variáveis primais e duais. É apresentada também uma função barreira clássica extrapolada para a inicialização dos multiplicadores de Lagrange. A eficiência do método foi verificada utilizando um problema teste e em problemas de fluxo de potência ótimo (FPO).
In this paper, we propose an approach that utilizes the penalty/modified barrier method to solve the general constrained problems. On this purpose, theoretical data were obtained, from a bibliographical review, which enlightened the logarithmic barrier primal-dual method and modified barrier method. In this approach, the bound constraints are handled by the modified log-barrier function, or by quadratic extrapolation and the equality constraints of the problem through Lagrangian function. The method, as implemented, consists of a two-stage approach: an outer cycle, where the constrained problem is transformed into unconstrained problem, using penalty/modified barrier Lagrangian function; and an inner cycle, where the Newton\'s method is used for update the primal and dual variables. Also, it is presented a classical barrier extrapolated function for initialization of Lagrange multipliers. The effectiveness of the proposed approach has been examined by solving a test problem and optimal power flow problems (OPF).
Palavras-chave
Extrapolação quadrática, Método de pontos interiores, Método de Newton, Método de barreira modificada, FPO, Interior point method, Modified barrier method, Newton' method, OPF, Quadratic extrapolation
Citação