O método da função Lagrangiana barreira modificada/penalidade
Data
2017-11-15
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo
Escola de Engenharia de São Carlos
Universidade de São Paulo
Escola de Engenharia de São Carlos
Resumo
Descrição
Neste trabalho propomos uma abordagem que utiliza o método de barreira modificada/penalidade para a resolução de problemas restritos gerais de otimização. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos primal-dual barreira logarítmica e método de barreira modificada. Nesta abordagem, as restrições de desigualdade canalizadas são tratadas pela função barreira de Frisch modificada, ou por uma extrapolação quadrática e as restrições de igualdade do problema através da função Lagrangiana. A implementação consiste num duplo estágio de aproximação: um ciclo externo, onde o problema restrito é convertido em um problema irrestrito, usando a função Lagrangiana barreira modificada/penalidade; e um ciclo interno, onde o método de Newton é utilizado para a atualização das variáveis primais e duais. É apresentada também uma função barreira clássica extrapolada para a inicialização dos multiplicadores de Lagrange. A eficiência do método foi verificada utilizando um problema teste e em problemas de fluxo de potência ótimo (FPO).
In this paper, we propose an approach that utilizes the penalty/modified barrier method to solve the general constrained problems. On this purpose, theoretical data were obtained, from a bibliographical review, which enlightened the logarithmic barrier primal-dual method and modified barrier method. In this approach, the bound constraints are handled by the modified log-barrier function, or by quadratic extrapolation and the equality constraints of the problem through Lagrangian function. The method, as implemented, consists of a two-stage approach: an outer cycle, where the constrained problem is transformed into unconstrained problem, using penalty/modified barrier Lagrangian function; and an inner cycle, where the Newton\'s method is used for update the primal and dual variables. Also, it is presented a classical barrier extrapolated function for initialization of Lagrange multipliers. The effectiveness of the proposed approach has been examined by solving a test problem and optimal power flow problems (OPF).
In this paper, we propose an approach that utilizes the penalty/modified barrier method to solve the general constrained problems. On this purpose, theoretical data were obtained, from a bibliographical review, which enlightened the logarithmic barrier primal-dual method and modified barrier method. In this approach, the bound constraints are handled by the modified log-barrier function, or by quadratic extrapolation and the equality constraints of the problem through Lagrangian function. The method, as implemented, consists of a two-stage approach: an outer cycle, where the constrained problem is transformed into unconstrained problem, using penalty/modified barrier Lagrangian function; and an inner cycle, where the Newton\'s method is used for update the primal and dual variables. Also, it is presented a classical barrier extrapolated function for initialization of Lagrange multipliers. The effectiveness of the proposed approach has been examined by solving a test problem and optimal power flow problems (OPF).
Palavras-chave
Extrapolação quadrática, Método de pontos interiores, Método de Newton, Método de barreira modificada, FPO, Interior point method, Modified barrier method, Newton' method, OPF, Quadratic extrapolation